References
References
Al-Khaldi et al., 2019: Al-Khaldi, M., J. T. Johnson, Y. Kang, S. Katzberg, A. Bringer, E. Kubatko and D. Wood, "Track-Based Cyclone Maximum Wind Retrievals Using the Cyclone Global Navigation Satellite System (CYGNSS) Mission Full DDMs," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 21-29, 2020, doi: 10.1109/JSTARS.2019.2946970.
Alpers, Werner, Biao Zhang, Alexis Mouche, Kan Zeng, Pak Wai Chan (2016). “Rain footprints on C-band synthetic aperture radar images of the ocean - Revisited”, Remote Sensing of Environment 187, 169-185, https://doi.org/10.1016/j.rse.2016.10.015 .
Ashton IGC, Shutler JD, Land PE, Woolf DK, Quartly GD (2016). A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2. PLoS One, doi: 10.1371/journal.pone.0161105
Atamanchuk, D., Koelling, J., Send, U., Wallace, D. W. R. (2020) Rapid transfer of oxygen to the deep ocean mediated by bubbles. Nature Geoscience, 13, 232–237. https://doi.org/10.1038/s41561-020-0532-2
Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean 462 barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy 463 of Sciences, 109 (36), 14 343–14 347.
Balaguru, K., G. R. Foltz, L. R. Leung, J. Kaplan, W. Xu, N. Reul, and B. Chapron, Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Amer. Meteor. Soc., doi: https://doi.org/10.1175/BAMS-D-19-0303.1.
Bhatia, K. T., Gabriel A. Vecchi , Thomas R. Knutson , Hiroyuki Murakami, James Kossin, Keith W. Dixon & Carolyn E. Whitlock (2019): Recent increases in tropical cyclone intensification Rates. Nature Communications (2019) 10:635
Belmonte Rivas, M., and Stoffelen, A., “Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT,” Ocean Sci., vol. 15, no. 3, pp. 831–852, 2019.
Bengtsson, L., K. I. Hodges, and E. Roeckner (2006), Storm tracks and climate change, J. Clim., 19, 3518–3543.
Bracegirdle, T. J., & Gray, S. L. (2008). An objective climatology of the dynamical forcing of polar lows in the Nordic seas. International Journal of Climatology, 28(14), 1903–1919. https://doi.org/10.1002/joc.1686
Brennan, Michael J., Christopher C. Hennon, Richard D. Knab, 2009, The Operational Use of QuikSCAT Ocean Surface Vector Winds at the National Hurricane Center, Weather and Forecasting 24 (6), pp.621. DOI: 10.1175/2008WAF2222188.1.
Bromwich, D., A. Wilson, L. Bai, Z. Liu, M. Barlage, C. Shih, S. Maldonado, K. Hines, S.-H. Wang, J. Woollen, B. Kuo, H. Lin, T. Wee, M. Serreze, and J. Walsh, 2018: The Arctic System Reanalysis Version 2. Bull. Amer. Meteor. Soc., 99, 805-828, doi: 10.1175/BAMS-D-16-0215.1. Full Text (PDF)
Cardellach E., Y. Nan, W. Li, R. Padullés, S. Ribó, and A. Rius, “Variational Retrievals of High Winds Using Uncalibrated CyGNSS Observables,” Remote Sens., vol. 12, no. 23, p. 3930, Nov. 2020.
Chen F. and H. von Storch, “Trends and Variability of North Pacific Polar Lows,” Adv. Meteorol., vol. 2013, p. e170387, Jun. 2013.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., … Yoon, J. (2020). Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1), 20–29. https://doi.org/10.1038/s41558-019-0662-y
Clarizia, M.P.; Valery, Z.; Ruf, C.; Level 2 Wind Speed Retrieval Algorithm Theoretical Basis Document. https://podaac-tools.jpl.nasa.ov/drive/files/allData/cygnss/L2/docs/148-0138-6_ATBD_L2_v3.0_Wind_Speed_Retrieval.pdf, 2020.
Clarizia, M.P.; Ruf, C.S. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 4419–4432. doi:10.1109/TGRS.2016.2541343.
Comiso, J.C., Parkinson, C.L., Gersten, R., and Stock, L., Accelerated decline in the Arctic Sea ice cover, Geophys. Res. Lett., 2008, vol. 35, L01703. doi 10.1029/2007GL03197
Crépin, A.-S., Karcher, M., & Gascard, J.-C. (2017). Arctic Climate Change, Economy and Society (ACCESS): Integrated perspectives. Ambio, 46(S3), 341–354. https://doi.org/10.1007/s13280-017-0953-3
CYGNSS. CYGNSS Level 2 Science Data Record Version 3.0, 2020. Accessed: 2021-02-18, doi:10.5067/CYGNS-L2X30.
De Kloe J., Stoffelen A. and Verhoef A., Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds, IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 5, pp. 2340-2347, 2017.
Durack, P.J. , S.E. Wijffels, R.J. Matear, Ocean salinities reveal strong global water cycle intensification during 1950 to 2000, Science, 336 (2012), pp. 455-458.
English, S., Prigent, C., Johnson, B., Yueh, S., Dinnat, E., Boutin, J., Newman, S., Anguelova, M., Meissner, T., Kazumori, M., Weng, F., Supply, A., Kilic, L., Bettenhausen, M., Stoffelen, A., & Accadia, C. (2020). “Reference-Quality Emission and Backscatter Modeling for the Ocean”, Bulletin of the American Meteorological Society, 101(10), E1593-E1601. Retrieved Jul 6, 2021, from https://journals.ametsoc.org/view/journals/bams/101/10/bamsD20008.
Esau, I. (2014). Indirect air-sea interactions simulated with a coupled turbulence-resolving model. Ocean Dynamics, 64(5). https://doi.org/10.1007/s10236-014-0712-y
Fan, S.-M., Harris, L. M., & Horowitz, L. W. (2015). Atmospheric energy transport to the Arctic 1979–2012. Tellus A: Dynamic Meteorology and Oceanography, 67(1), 25482. https://doi.org/10.3402/tellusa.v67.25482
Fan S, B. Zhang, A. Mouche, W. Perrie, J. A. Zhang, G. Zhang, 2020: Estimation of wind direction in tropical cyclones using C-and dual-polarization synthetic aperture radar, IEEE Trans. Geosci. Remote Sens., 58, 1450-1462.
Fernandez, D.E., Kerr, E.M., Castells, A.; Carswell, J. R.; Shaffer, S.J.; Chang, P.S.; Black, P.G.; Marks, F.D. IWRAP: The Imaging Wind and Rain Airborne Profiler for Remote Sensing of the Ocean and the Atmospheric Boundary Layer within Tropical Cyclones. IEEE Trans. Geosci. Remote Sens., 43, 1775–1787, 2005
Franklin, J.L., Black M.L., Valde K., GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications. Weather Forecast, 18, 32–44, 2003,
Fu, L. & Holt, Benjamin. (1982). SEASAT views oceans and sea ice with Synthetic Aperture Radar. JPL Publ.. 81–120.
Gargett, A. E. and Savidge, D. K., 2020: Winds, waves and turbulence on a willow continental shelf during passage of a tropical storm. J. Physical Oceanography. doi.org/10.1175/JPO-D-20-0024.1.
Gleason, S.; Ruf, C. Overview of the Delay Doppler Mapping Instrument (DDMI) for the cyclone global navigation satellite systems mission (CYGNSS). 2015 IEEE MTT-S International Microwave Symposium. IEEE, 2015, pp. 1–4. doi:10.1109/MWSYM.2015.7166775.
Gleason S., C. S. Ruf, A. J. O’Brien, and D. S. McKague, “The CYGNSS Level 1 Calibration Algorithm and Error Analysis Based on On-Orbit Measurements,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 1, pp. 37–49, Jan. 2019.
Glenn, S. M., T. N. Miles, G. N. Seroka, Y. Xu, and coauthors, 2016: Stratified coastal ocean interactions with tropical cyclones, Nature Commun, 7:10887.
Grieco, G., A. Stoffelen, M. Portabella, M. Belmonte Rivas, W. Lin and F. Fabra, "Quality Control of Delay-Doppler Maps for Stare Processing", Transactions on Geoscience and Remote Sensing 57 (5), pp. 2990-3000, May 2019, doi: 10.1109/TGRS.2018.2879059.
Hanafin Jennifer, Quilfen Yves, Ardhuin Fabrice, Sienkiewicz Joseph, Queffeulou Pierre, Obrebski Mathias, Chapron Bertrand, Reul Nicolas, Collard Fabrice, Corman David, De Azevedo Eduardo B., Vandemark Doug, Stutzmann Eleonore (2012). Phenomenal sea states and swell from a North Atlantic Storm in February 2011: a comprehensive analysis . Bulletin Of The American Meteorological Society , 93(12), 1825-1832 . Publisher's official version : https://doi.org/10.1175/BAMS-D-11-00128.1
Hoareau, N., Portabella, M., Lin, W., Ballabrera-Poy, J., and Turiel, A., “Error characterization of sea surface salinity products using triple collocation analysis,” IEEE Trans. Geosci. Rem. Sens., 56 (9), pp. 5160-5168, https://doi.org/10.1109/TGRS.2018.2810442, 2018.
Hock, T.F. and J.L. Franklin, 1999: The NCAR GPS Dropwindsonde. Bull. Amer. Meteor. Soc. 80, 407–420.
Holland, G. J, 1980: An analytic model of the wind and pressure profiles in hurricanes, Mon. Weather Rev., 108, 1212-1218.
Holland, G., 2010: A revised hurricane pressure-wind model, Mon. Weather Rev., 136, 3432-3445.
Holding T, Ashton IG, Shutler JD, Land PE, Nightingale PD, Rees AP, Brown I, Piolle J-F, Kock A, Bange HW, et al (2019). The FluxEngine air-sea gas flux toolbox: simplified interface and extensions for in situ analyses and multiple sparingly soluble gases. Ocean Science, 15(6), 1707-1728.
Huang, S.-M., and L.-Y. Oey, 2015: Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone,” J. Geophys. Res. Oceans., 120, 5735-5748.
Inoue, J. M. E. Hori, Y. Tachibana, and T. Kikuchi, “A polar low embedded in a blocking high over the Pacific Arctic,” Geophys. Res. Lett., vol. 37, no. 14, p. L14808, Jul. 2010
Isaksen, L., and A. Stoffelen, (2000). "ERS scatterometer wind data impact on ECMWF's
tropical cyclone forecasts", IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 4, pp. 1885-1892, July 2000, doi: 10.1109/36.851771.
Ito, J., Oizumi, T., & Niino, H. (2017). Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones. Scientific Reports, 7(1), 3798. https://doi.org/10.1038/s41598-017-03848-w
Ivanov,V., V. A. Alexeev, T. A. Alexeeva, N. V. Koldunov, I. A. Repina, and A. V. Smirnov, “Is the Arctic sea ice becoming seasonal?,” Earth Observation from Space, no. 4, pp. 50–65, 2013. (in Russian)
Kloe, J. de, A. Stoffelen and A. Verhoef, 2017, Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds, J. Sel. Topics in Appl. Earth Obs. And Rem. Sens. 10 (5), 2340-2347, doi:10.1109/JSTARS.2017.2685242.
Klotz, B. W., & Uhlhorn, E. W. (2014). Improved Stepped Frequency Microwave Radiometer Tropical Cyclone Surface Winds in Heavy Precipitation, Journal of Atmospheric and Oceanic Technology, 31(11), 2392-2408.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Amer. Meteor. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1.
Kossin, J. P., K. R. Knapp, T. L. Olander, and C. S. Velden, 2020: Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Nat. Acad. Sci., in press.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E., Van Heuven, S., et al. (2015). The reinvigoration of the Southern Ocean carbon sink. Science (80). 349, 1221–1224. doi:10.1126/science.aab2620.
Levy, M., Lengaigne, M., Bopp, L., Vincent, E. M., Madec, G., Ethe, C., Kumar, D., Sarma, V. V. S. S. (2012) Contribution of tropical cyclones to the air‐sea CO2 flux: A global view, Global Biogeochemical Cycles, doi: 10.1029/2011GB004145.
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). Global Carbon Budget 2017. Earth System Science Data 10, 405–448. doi:10.5194/essd-10-405-2018.
Landgren, OA, Batrak, Y, Haugen, JE, Støylen, E, Iversen, T. Polar low variability and future projections for the Nordic and Barents Seas. Q J R Meteorol Soc. 2019; 145: 3116– 3128. https://doi.org/10.1002/qj.3608
Li, M., Vagle, S., & Farmer, D. M. (2009). Large Eddy Simulations of Upper-Ocean Response to a Midlatitude Storm and Comparison with Observations. Journal of Physical Oceanography, 39(9), 2295–2309. https://doi.org/10.1175/2009JPO4165.1
Li, H., Chapron, B., Mouche, A. A., & Stopa, J. E. (2019). A new ocean SAR cross‐spectral parameter: Definition and directional property using the global Sentinel‐1 measurements. Journal of Geophysical Research: Oceans, 124, 1566– 1577. https://doi.org/10.1029/2018JC014638
Li, C., Michel, C., Seland Graff, L., Bethke, I., Zappa, G., Bracegirdle, T. J., … Wettstein, J. J. (2018). Midlatitude atmospheric circulation responses under 1.5 and 2.0g°C warming and implications for regional impacts. Earth System Dynamics, 9(2), 359–382. https://doi.org/10.5194/esd-9-359-2018
Lin, N., and D. Chavas, 2012: On hurricane parametric wind and applications in storm surge modelling, J. Geophys. Res. Oceans, 117, D09120.
Lin, W., Portabella, M., Stoffelen, A., Vogelzang, J., and Verhoef, A., “ASCAT wind quality under high subcell wind variability conditions,” J. Geophys. Res. Oceans, 120 (8), pp. 5804–5819, https://doi.org/10.1002/2015JC010861, 2015.
Lin W., M. Portabella, A. Stoffelen, A. Verhoef, and A. Turiel, “ASCAT wind quality control near rain,” IEEE Trans. Geosci. Rem. Sens., 53 (8), pp. 4165-4177, 2015.
Lin W., and M. Portabella, “Towards an improved wind quality control for RapidScat,” IEEE Trans. Geosci. Rem. Sens., 55 (7), pp. 3922-3930, 2017.
NOAA/NESDIS/STAR. NOAA CYGNSS Level 2 Science Wind Speed 25-km Product Version 1.1, 2020., doi:10.5067/CYGNN-22511.
Liu G., et al… Perrie, 2020: Bulk, Spectral and Deep-water Approximations for Stokes Drift: Implications for Coupled Ocean Circulation and Wave Propagation Models. Journal of Advances in Modeling Earth Systems, in revision.
Mai, M., B. Zhang, X. Li, P. A. Hwang, J. A. Zhang, 2016: Application of AMSR-E and AMSR2 low-frequency channel brightness temperature data for hurricane wind retrievals, IEEE Trans. Remote Sens., 54, 4501-4512.
Mallet, P.-E., C. Claud, C. Cassou, G. Noer and K. Kodera (2013), Polar lows over the Nordic and Labrador Seas: Synoptic circulation patterns and associations with North Atlantic‐Europe wintertime weather regimes, J. Geophys. Res. Atmos., 118, 2455-2472, doi:10.1002/jgrd.50246.
Mallet, P.‐E., Claud, C. and Vicomte, M. (2017), North Atlantic polar lows and weather regimes: do current links persist in a warmer climate?. Atmos. Sci. Lett., 18: 349-355. doi:10.1002/asl.763
Marseille, G.-J., Ad Stoffelen, Henk van den Brink and Andrew Stepek, 2019: WISC Bias Derivation and Uncertainty Assessment, C3S Windstorm Information Service - Copernicus (WISC), Doc. C3S_441_Lot3_WISC_SC2-D3.3-CGI-RP-17-0071, KNMI, https://wisc.climate.copernicus.eu/wisc/documents/shared/(C3S_441_Lot3_WISC_SC2-D3.3-CGI-RP-17-0071)%20(Final%20Bias%20Derivation)%20(v1.0).pdf )
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., … Raasch, S. (2019). Overview of the PALM model system 6.0. Geoscientific Model Development Discussions, (June), 1–63. https://doi.org/10.5194/gmd-2019-103
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., and Floc'h, F. ( 2016), Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe, Geophys. Res. Lett., 43, 2135– 2143, doi:10.1002/2015GL067492.
McConochie, J. D., T. A. Hardy, L. B. Mason, 2004: Modelling tropical cyclone over-water wind and pressure fields, Ocean Eng., 31, 1757-1782.
Meissner, T, and F. Wentz, 2009: Wind vector retrievals under rain with passive satellite microwave radiometers, IEEE Transactions on Geoscience and Remote Sensing, 47, 3065-3083.
Meissner, T., F. Wentz, and L. Ricciardulli, 2014: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor, J. Geophys. Res., 119, doi:10.1002/2014JC009837.
Meissner, T., L Ricciardulli, and F.J. Wentz, 2017: Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms, Bull. Amer. Meteor. Soc., 98(8), 1660-1677, doi: 10.1175/BAMS-D-16-0052.1.
Meissner, T., L. Ricciardulli, and F. Wentz, 2018: Remote Sensing Systems SMAP daily Sea Surface Winds Speeds on 0.25 deg grid, Version 01.0. [NRT or FINAL]. Remote Sensing Systems, Santa Rosa, CA. Available online at www.remss.com/missions/smap/.
Müller, M., Batrak, Y., Kristiansen, J., Køltzow, M. A. Ø., Noer, G., & Korosov, A. (2017).
Characteristics of a Convective-Scale Weather Forecasting System for the European Arctic. Monthly Weather Review, 145(12), 4771–4787. https://doi.org/10.1175/mwr-d-17-0194.1
Mouche, A., B. Chapron, B. Zhang, and R. Husson, 2017: Combined co- and cross- polarized SAR measurements under extreme wind conditions, IEEE Trans. Geosci. Remote Sens., 55(12), 6746-6755, https://doi.org/10.1109/TGRS.2017.2732508
Mouche, A., B. Chapron, J. Knaff, Y. Zhao, B. Zhang, and C. Combot, 2019: Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind structures: Application to Irma category 5 hurricane, J. Geophys. Res., 124, 3905-3922.
Müller, G., Brümmer, B., & Alpers, W. (1999). Roll convection within an Arctic cold-air outbreak: Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Monthly Weather Review, 127(2–3), 363–380.
Nakamura, H., Nakamura, M., & Anderson, J. L. (1997). The Role of High- and Low-Frequency Dynamics in Blocking Formation. Monthly Weather Review, 125, 2074–2093
Nakanishi, M., & Niino, H. (2012). Large-Eddy Simulation of Roll Vortices in a Hurricane Boundary Layer. Journal of the Atmospheric Sciences, 69(12), 3558–3575. https://doi.org/10.1175/JAS-D-11-0237.1
NOAA Level 2 CyGNSS Winds Basic User Guide. https://podaac-tools.jpl.nasa.gov/drive/files/allData/cygnss/L2/docs/basic_user_guide_noaa_l2_wind_v1.1.pdf, 2020.
Noer, G., Saetra, Ø., Lien, T., & Gusdal, Y. (2011). A climatological study of polar lows in the Nordic Seas. Quarterly Journal of the Royal Meteorological Society, 137(660), 1762–1772. https://doi.org/10.1002/qj.846
Olabarrieta M, Warner JC, et al., 2012: Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 43–44:112– 137. doi:10.1029/2011JC007387.
Park J., A. A. Korosov, M. Babiker, S. Sandven and J. Won, "Efficient Thermal Noise Removal for Sentinel-1 TOPSAR Cross-Polarization Channel," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3, pp. 1555-1565, March 2018, doi: 10.1109/TGRS.2017.2765248.
Pascual, D.; Clarizia, MP; Ruf, Chris; Enhanced CYGNSS WS 3.0 using WW3 SWH correction, CYGNSS Science Team Meeting, Online, February 8-10 2021.
Pfhal, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M., & H.Wernli. (2015). Importance of latent heat release in ascending air streams for atmospheric blocking. Nature Geosciences, 8, 610–615. https://doi.org/10.1038/NGEO2487
Polverari, F., et al. (2021). "On High and Extreme Wind Calibration Using ASCAT", Transactions on Geoscience and Remote Sensing, https://www.doi.org/10.1109/TGRS.2021.3079898 .
Portabella, M., and Stoffelen, A., “Rain detection and quality control of SeaWinds,” J. Atm. and Ocean Techn., 18 (7), pp. 1171-1183, 2001.
Portabella, M., Stoffelen, A., Lin, W., Turiel, A., Verhoef, A., Verspeek, J., and Ballabrera-Poy, J., “Rain effects on ASCAT retrieved winds: towards an improved quality control,” IEEE Trans. Geosci. Rem. Sens., 50 (7), pp. 2495-2506, https://doi.org/10.1109/TGRS.2012.2185933, 2012.
Prasad, T. G., and P. J. Hogan, 2007: Upper-ocean response to hurricane Ivan in a 1/25o nested Gulf of Mexico HYCOM, J. Geophys. Res., 112, C034013.
Rasmussen, E. A. & Turner, J. (2003), Polar Lows: Mesoscale Weather Systems in the Polar Regions, Cambridge: Cambridge University Press, p. 612, ISBN 0-521-62430-4.
Rayson, M. D., G. N. Ivey, N. L. Jones, R. J. Lowe, G. W. Wake, and J. D. McConochie, 2015: Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf, J. Geophys. Res. Oceans, 120, 7722-7751.
Reul, N., J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr, 2012: SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes,” J. Geophys. Res., 117, C02006.
Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014: Multisensor observations of the amazon-orinoco river plume interactions with hurricanes. Journal of 556 Geophysical Research: Oceans, 119 (12), 8271–8295.
Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, Y. Quilfen, S. Guimbard and J. F. Piolle, 2016: A revised L-band radio-brightness sensitivity to extreme winds under Tropical Cy-clones: the five year SMOS-storm database. Remote Sens. Environ., 180, 274-291, doi: 10.1016/j.rse.2016.03.011.
Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, A. Mouche, J. Tenerelli, F. Collard, J.F. Piolle, A. Fore, S. Yueh, J. Cotton, P. Francis, Y. Quilfen, and V. Kudryavtsev, 2017: A new generation of tropical cyclone size measurements from space. Bull. Amer. Meteor. Soc., 98, 2367-2385, doi:10.1175/BAMS-D-15-00291.1.
Rius, A., , E. Cardellach, B. Guo, W. Li, S. Ribó and N. Yang, Variational wind speed retrievals of uncalibrated yGNSS data: response to high wind, CYGNSS science team meeting, On-line, 9-11 June 2020.
Rojo, M., Claud, C., Mallet, P.E., Noer, G., Carleton, A.M., Vicomte, M. (2015): Polar low tracks over the Nordic Seas: a 14-winter climatic analysis, Tellus A: Dynamic Meteorology and Oceanography, 67:1, DOI: 10.3402/tellusa.v67.24660
Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bulletin of the American Meteorological Society 2019, 100, 2009–2023. doi:10.1175/BAMS-D-18-0337.1.
Rojo, Maxence; Noer, Gunnar; Claud, Chantal (2019): Polar Low tracks in the Norwegian Sea and the Barents Sea from 1999 until 2019. PANGAEA, https://doi.org/10.1594/PANGAEA.903058,
Rotunno, R., Chen, Y., Wang, W., Davis, C., Dudhia, J., & Holland, G. J. (2009). Large-Eddy Simulation of an Idealized Tropical Cyclone. Bulletin of the American Meteorological Society, 90(12), 1783–1788. https://doi.org/10.1175/2009BAMS2884.1;
Saetra, Ø., Noer, G., Lien, T., Gusdal, Y., 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc., 137, 1762-1772, doi:10.1002/qj.846.
Saetra, Ø. Noer, G., Lien, T. Gusdal, Y., STARS-DAT (2013), STARS Data Set, Oslo, Norway. [Available: http://polarlow.met.no/stars-dat/, accessed 13 December 2015.]
Said, F., Z. Jelenak, J. Park, S. Soisuvarn and P. S. Chang, "A ‘Track-Wise’ Wind Retrieval Algorithm for the CYGNSS Mission," IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 8711-8714, doi: 10.1109/IGARSS.2019.8898099.
Sapp J.W., Alsweiss S.O., Jelenak Z., Chang P.S., Carswell J., Stepped Frequency Microwave Radiometer Wind-Speed Retrieval Improvements. Remote Sens., 11, 214, 2019, https://doi.org/10.3390/rs11030214 .
Schuckmann, K Von, PY Le Traon, N Smith et al. (2021). “Copernicus marine service ocean state report, issue 5”, Journal of Operational Oceanography, in review.
Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and S. Glenn, 2017: Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes, J. Geophys. Res. Oceans, 122, 4845-4867.
Shutler JD, Land PE, Piolle JF, Woolf DK, Goddijn-Murphy L, Paul F, Girard-Ardhuin F, Chapron B, Donlon CJ (2016). FluxEngine: a flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies. Journal of Atmospheric and Oceanic Technology, 33(4), 741-756.
Shutler JD, Wanninkhof R, Nightingale PD, Woolf DK, Bakker DCE, Watson A, Ashton I, Holding T, Chapron B, Quilfen Y, et al (2019). Satellites will address critical science priorities for quantifying ocean carbon. Frontiers in Ecology and the Environment, 18(1), 27-35.
Smirnova, J. E., P. A. Golubkin, L. P. Bobylev, E. V. Zabolotskikh, and B. Chapron, 2015: Polar low climatology over the Nordic and Barents Seas based on satellite passive microwave data. Geophys. Res. Lett., 42, 5603-5609, doi:10.1002/2015GL063865.
Smith, R. K., and M. T. Montgomery, 2015: Toward Clarity on Understanding Tropical Cyclone Intensification. J. Atmos. Sci., 72, 3020–3031, https://doi.org/10.1175/JAS-D-15-0017.1.
Soloviev, A., Lukas, R., Donelan, M. et al. (2015) The air-sea interface and surface stress under tropical cyclones. Scientific Reports 4, 5306. https://doi.org/10.1038/srep05306
Stoffelen, Ad, Gert-Jan Marseille, Weicheng Ni, Alexis Mouche, Federica Polverari, Marcos Portabella, Wenming Lin, Joe Sapp, Paul S. Chang, Zorana Jelenak (2021). “Hurricane Ocean Wind Speeds”, IGARSS conference paper TH1.O-10.5, https://igarss2021.com/ 12-16 July 2021.
Stoffelen, A., Mouche, A., Polverari, F., Van Zadelhoff, G.-J., Sapp, J., Portabella, M., Chang, P., Lin, W., and Jelenak, Z., “C‐band High and Extreme‐Force Speeds (CHEFS),” Final report EUMETSAT ITT 16/166, available at https://www.eumetsat.int/CHEFS/ , April 2020.
Stoffelen, A., R. Kumar, J. Zou, V. Karaev, P.S. Chang, E. Rodriguez, 2019, Ocean surface vector wind observations, Remote Sensing of the Asian Seas, 429-447, Springer (Eds. Barale & Gade).
Stoffelen, A., J. Verspeek, J. Vogelzang and A. Verhoef, 2017, The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals, J. Sel. Topics in Appl. Earth Obs. And Rem. Sens. 10 (5), 2123-2134, doi:10.1109/JSTARS.2017.2681806.
Stoffelen, A. (1998), Toward the true near-surface wind speed: Error modeling and calibration using triple collocation, J. Geophys. Res., 103, 7755–7766, doi:10.1029/97JC03180.
Stoll, P. J., Graversen, R. G., Noer, G., & Hodges, K. (2018). An objective global climatology of polar lows based on reanalysis data. Quarterly Journal of the Royal Meteorological Society, 144(716), 2099–2117. https://doi.org/10.1002/qj.3309
Sun, Z., B. Zhang, J. A. Zhang, and W. Perrie, 2019: Examination of surface wind asymmetry in tropical cyclones over the Northwest Pacific Ocean using SMAP observations, Remote Sens., 11, 2604
Tao, D., Bell, M., Rotunno, R., & van Leeuwen, P. J. ( 2020). Why do the maximum intensities in modeled tropical cyclones vary under the same environmental conditions?. Geophysical Research Letters, 47, e2019GL085980. https://doi.org/10.1029/2019GL085980
Trenberth, K. E., & Stepaniak, D. P. (2004). The flow of energy through the earth’s climate system. Quarterly Journal of the Royal Meteorological Society, 130(603), 2677–2701. https://doi.org/10.1256/qj.04.83
Trindade, A., Portabella, M., Stoffelen, A., Lin, W., and Verhoef, A., “ERAstar: a high resolution ocean forcing product”, IEEE Trans. Geosci. Rem. Sens., 58 (2), pp. 1337-1347, https://doi.org/10.1109/TGRS.2019.2946019, 2020.
Uhlhorn, E., and P. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Ocean. Tech., 20, 99-116, doi: doi: 10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.
Uhlhorn, E., J. Franklin, M. Goodberlet, J. Carswell, and A. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135(9), 3070 – 3085, doi: 10.1175/MWR3454.1.
Verezemskaya, P., Tilinina, N., Gulev, S., Renfrew, I. A., & Lazzara, M. (2017). Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics. Geophysical Research Letters, 44(15), 7985–7993. https://doi.org/10.1002/2017GL074053
Vogelzang, J., and A. Stoffelen, 2021, “Quadruple collocation analysis of in-situ, scatterometer, and NWP winds”, Journal of Geophysical Research: Oceans, 126, e2021JC017189. https://doi.org/10.1029/2021JC017189.
Vogelzang, J., and A. Stoffelen, 2017, "ASCAT Ultrahigh-Resolution Wind Products on Optimized Grids”, J. Sel. Topics in Appl. Earth Obs. And Rem. Sens. 10 (5), pp. 2332-2339, doi: 10.1109/JSTARS.2016.2623861.
Vogelzang, J., G. P. King, and A. Stoffelen (2015), Spatial variances of wind fields and their relation to second-order structure functions and spectra, J. Geophys. Res. Oceans, 120, 1048–1064, doi:10.1002/2014JC010239.
Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa‐Saldaña, J. ( 2011), On the quality of high‐resolution scatterometer winds, J. Geophys. Res., 116, C10033, doi:10.1029/2010JC006640.
Vogelzang, J., and A. Stoffelen, 2017, "ASCAT Ultrahigh-Resolution Wind Products on Optimized Grids”, J. Sel. Topics in Appl. Earth Obs. And Rem. Sens. 10 (5), pp. 2332-2339, doi: 10.1109/JSTARS.2016.2623861.
Vood, V. T., L. W. White, H. E. Willoughby, D. P. Jorgensen, 2012: A new parametric tropical cyclone tangential wind profile model, Mon. Weather Rev., 141, 1884-1909.
Wang, Z., Stoffelen, A., Zhao, C., Vogelzang, J. Verhoef, A., Verspeek, J., Lin, M., and Chen, G., “A SST-dependent Ku-band geophysical model function for RapidScat,” J. Geophys. Res. Oceans, 122(4), 3461-3480, 2017.
Wang, X. L., Wan, H., Zwiers, F. W., Swail, V. R., Compo, G. P., Allan, R. J., … Yin, X. (2011). Trends and low-frequency variability of storminess over western Europe, 1878–2007. Climate Dynamics, 37, 2355–2371. https://doi.org/10.1007/s00382-011-1107-0
Wang, P., and J. Sheng, 2016: A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model, J. Geophys. Res. Oceans, 121, 5252-5281.
Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., et al. (2013b). Global ocean carbon uptake: Magnitude, variability and trends. Biogeosciences 10, 1983–2000. doi:10.5194/bg-10-1983-2013.
Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Davila, M., et al. (2009). Tracking the variable North Atlantic sink for atmospheric CO2. Science (80-. ). 326, 1391–1393. doi:10.1126/science.1177394.
Willoughby, H. E., R. W. R. Darling, M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles, Mon. Weather Rev., 134, 1102-1120.
Woolf DK, Shutler JD, Goddijn‐Murphy L, Watson AJ, Chapron B, Nightingale PD, Donlon CJ, Piskozub J, Yelland MJ, Ashton I, et al (2019). Key Uncertainties in the Recent Air‐Sea Flux of CO2. Global Biogeochemical Cycles, 33(12), 1548-1563.
Wickström, S., Jonassen, M. O., Vihma, T., & Uotila, P. (2020). Trends in cyclones in the high‐latitude North Atlantic during 1979–2016. Quarterly Journal of the Royal Meteorological Society, 146(727), 762–779. https://doi.org/10.1002/qj.3707
Xie, L., H. Liu, B. Liu, and S. Bao, 2011: A numerical study of the effect of hurricane wind asymmetry on storm surge and inundation, Ocean Modelling, 36, 71-79.
Xu X., and A. Stoffelen, “Improved rain screening for ku-band wind scatterometry,” IEEE Trans. Geosci. Remote Sens., 58 (4), pp. 2494–2503, 2020.
Xu X., A. Stoffelen, W. Lin, X. Dong, “Rain False-Alarm-Rate Reduction for CSCAT,” IEEE Geosci. Rem. Sens. Lett., https://doi.org/10.1109/LGRS.2020.3039622, in press 2021.
Yamaguchi, M., Chan, J.C.L., Moon, I. et al. Global warming changes tropical cyclone translation speed. Nat Commun 11, 47 (2020). https://doi.org/10.1038/s41467-019-13902-y
Yue, Q., Kahn, B. H., Xiao, H., … Sušelj, K. (2013). Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model. Journal of Geophysical Research Atmospheres, 118(15), 8598–8611.
Yueh S., A. Fore, W. Tang, A. Hayashi, B. Stiles, N. Reul, Y. Wengi, F. Zhang, 2016: SMAP L-Band Passive Microwave Observations of ocean surface wind during severe storms, IEEE Trans. Geosci. Rem. Sens., 54(12), 7339–7350, doi: 10.1109/TGRS.2016.2600239.
Young, G. S., Sikora, T. D., & Winstead, N. S. (2000). Inferring marine atmospheric boundary layer properties from spectral characteristics of satellite-borne SAR imagery. Monthly Weather Review, 128(5), 1506–1520.
Zabolotskikh, E., and B. Chapron, "Improvements in Atmospheric Water Vapor Content Retrievals Over Open Oceans From Satellite Passive Microwave Radiometers," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 7, pp. 3125-3133, July 2017.
Zabolotskikh, E., L. Mitnik, N. Reul, and B. Chapron, (2015): New possibilities for geophysical parameter retrievals opened by GCOM-W1 AMSR2. IEEE J. Sel. Topics Appl. Earth Obs. Re-mote Sens., 8(9), 4248-4261, doi: 10.1109/JSTARS.2015.2416514.
Van Zadelhoff, G.-J., Stoffelen, A., Vachon, P. W., Wolfe, J., Horstmann, J., and Belmonte Rivas, M.: Retrieving hurricane wind speeds using cross-polarization C-band measurements, Atmos. Meas. Tech., 7, 437–449, https://doi.org/10.5194/amt-7-437-2014, 2014.
Zambon, J. B., R. He, and J. C. Warner, 2014: Investigation of Hurricane Ivan using the coupled ocean– atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn., 64, 1535–1554, doi:10.1007/s10236 -014-0777-7
Zahn, M., & von Storch, H. (2010). Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467(7313), 309–312. https://doi.org/10.1038/nature09388
Zavorotny V. U., S. Gleason, E. Cardellach, and A. Camps, “Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity,” Geosci. Remote Sens. Mag. IEEE, vol. 2, no. 4, pp. 8–45, Dec. 2014.
Zhang G, Murakami H, Knutson TR, Mizuta R, Yoshida K. Tropical cyclone motion in a changing climate. Sci Adv. 2020;6(17):eaaz7610. Published 2020 Apr 22. doi:10.1126/sciadv.aaz7610
Zhang B, W. Perrie, Jun A. Zhang, E. Uhlhorn, and Y. He, 2014: High resolution hurricane vector winds from C-band dual-polarization SAR observations, J. Atmos. Oceanic Technol., 31, 272-286.
Zhang B, W. Perrie, 2014: Recent progress on high wind speed retrieval from multi-polarization SAR imagery: A review, Int. J. Remote Sen., 35, 4031-4045.
Zhang G, X. Li, W. Perrie, P. A. Hwang, B. Zhang, and X. Yang, 2017: A hurricane wind speed retrieval model for C-band Radarsat-2 cross-polarization ScanSAR images, IEEE Trans. Geosci. Remote Sens., 55, 4766-4744.
Zhang, B. and W. Perrie, 2012: Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes, Bull. Am. Meterol. Soc., 93(4), pp. 531-541.
Zhang, J.A. and E.W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 3587–3605, https://doi.org/10.1175/MWR-D-11-00339.1
Zhang G, W. Perrie, B. Zhang, J. Yang, Y. He, 2020: Monitoring of tropical cyclone structures in ten years of RADARSAT-
2 SAR images, Remote Sens Environ., 236, 111449.
Zhang G, X. Li, W. Perrie, B. Zhang, and L. Wang, 2015: Rain effect on the hurricane observations over the ocean by C-band synthetic aperture radar, J. Geophys. Res., Oceans, 120, doi:10.1002/2015JC011044.
Zhang B, W. Alpers, 2018: The effect of rain on radar backscattering from the Ocean, Advance in SAR Remote Sensing of Oceans. (book chapter).
Zhang G, B. Zhang, W. Perrie, Y. He, H. Fang, S. Khurshid, and K. Warner, 2019: C-band right-circular polarization ocean wind retrieval, IEEE Geosci. Remote Sens Lett., 16, 1398-1401.
Zhao, Y., A. Mouche, B. Chapron, and N. Reul, 2018: Direct Comparison Between Active C-Band Radar, IEEE Trans. Geosci. Remote Sens. Lett., 15 (6), 897 – 901.